Complex symmetric operators, skew symmetric operators and reflexivity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex Symmetric Operators and Applications

We study a few classes of Hilbert space operators whose matrix representations are complex symmetric with respect to a preferred orthonormal basis. The existence of this additional symmetry has notable implications and, in particular, it explains from a unifying point of view some classical results. We explore applications of this symmetry to Jordan canonical models, selfadjoint extensions of s...

متن کامل

Complex Symmetric Operators and Applications Ii

A bounded linear operator T on a complex Hilbert space H is called complex symmetric if T = CT ∗C, where C is a conjugation (an isometric, antilinear involution of H). We prove that T = CJ |T |, where J is an auxiliary conjugation commuting with |T | = √ T ∗T . We consider numerous examples, including the Poincaré-Neumann singular integral (bounded) operator and the Jordan model operator (compr...

متن کامل

Orthogonal and Skew-Symmetric Operators in Real Hilbert Space

In the theory of traces on operator ideals, it is desirable to treat not only the complex case. Several proofs become much easier when the underlying operators are represented by real matrices. Motivated by this observation, we prove two theorems which, to the best of our knowledge, are not available in the real setting: (1) every operator is a finite linear combination of orthogonal operators,...

متن کامل

The Riesz Decomposition Theorem for Skew Symmetric Operators

An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this note, we explore the structure of skew symmetric operators with disconnected spectra. Using the classical Riesz decomposition theorem, we give a decomposition of certain skew symmetric operators with disconnected spectra. Severa...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operators and Matrices

سال: 2017

ISSN: 1846-3886

DOI: 10.7153/oam-2017-11-66